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Abstract. Minimum uncertainty angular momentum states for the quantum gséyg2) are
constructed. They involve the eigenvaluesJefwhich areg-numbers and the quantum group
analogue of the Wigned-functions foré = x/2. The result is generalized for all values é&f
and a formula for the quantum Wignérfunction is derived. The case gf = 1 is discussed
and compared with the well known results for the Wigdeiunctions.

1. Introduction

Quantum groups originate in the study of quantum inverse scattering methods and since then
there have been many extensive studies on their representation theory and structure. In this
paper we discuss the finite dimensional representation of the quantum$ip®) with the
intention of constructing minimum uncertainty states. In the process we are led to the notion
of rotation in quantum groups and the matrix elements of angular momentum operators.
These define the quantum group analogue of Wigh#unctions (rotation matrices) which
reduce to the well knowrl! ,(6) functions wheng = 1. A result for the ratio of two

such quantum Wignet-functions as a continued fraction is obtained. This is verified to be
true forq = 1. Forg # 1, it is suggestive from our discussion that the quantum Wigner
d-function can be expressed in terms of¢a ¢-hypergeometric function.

It is well known that the representation theory of classical Lie algebras gives an algebraic
setting for many special functions in mathematical physics. Quantum (deformed) Lie
groups and algebras play a role for generalization to laghe deformation parameter)
of these functions, namely,-special functions. Here we motivate one sucfunction, a
g-hypergeometric functiopg; (Heine’s series) by considering rotation $it/, (2).

The coherent states of the quantum Heisenberg group formeg-tiyson creation,
annihilation and the number operators satisfy the minimum uncertainty property [1]. On
the other hand it is known that in the case of ordin&®/(2), the angular momentum
coherent states do not necessarily satisfy the minimum uncertainty property [2]. The angular
momentum coherent states and those that give minimum uncertainty product are respectively
called Bloch and ‘intelligent’ states in the literature. Explicit construction procedures for
them in the case of ordinary angular momentum algebra are known [2]. For the quantum
group SU,(2), coherent states have been constructed by Jurco [3] and recently by Aref'eva
et al [4] using the theory of harmonic analysis. In this paper, we construct states having the
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minimum uncertainty forSU, (2) by introducing the notion of rotation in quantum groups
and give the matrix elements of the rotation operators.

2. Construction of minimum uncertainty states

The g-deformed algebra ofU,(2) is an associative algebra of the generatdys/. (=
J1 £ 1J,) satisfying

[J3, Ji] = £J2
[Jy, J_] =[2J4] 1)
where
qn _ q—n
[n] = ——.
q—q7t
The irreducible representation 8, (2) in a (2j 4 1)-dimensional Hilbert space is spanned
by vectors|j, —j), |j, —j + 1, 1j,—j +2),...,|j, j) and the action of the generators (1)
is
J3lj, m) = m|j, m) )
Teljsm) = (Lj —mllj +m+ 177 jom +1)
J-ljsm) = ([j +mllj —m+1DY?j,m = 1). )
Jurco [3] defined the coherent state &/, (2) as
o) = €741, —J) €©)

where ¢ is g-exponential function,

00 X"
e = .
a ; [n]!
The state in (3) is (i) continuous i and (ii) satisfies the completeness property (resolution
of unity). The uncertainty relation following from (1) is

Ay DTy > 3([275])] (4)

and it can be verified that the coherent state (3) does not have the minimum uncertainty
property. An important observation regarding (3) is worth pointing out. In the ordinary
SU(2) case, we have*é |j, —j) which amounts to a mere redefinition of the axes of the
system and so it is a trivial choice. However, in the quantifify(2) case, as in (3), we
have ag-exponential function which is not a rotation operator in the standard sense and
so (3) is a non-trivial choice. In fact a proper representation of a rotation operator for this
guantum group will be considered in due course.

We exploit the first relation in (1) in constructing minimum uncertainty stateStay(2).
We modify the well known procedure [5] in the ordinasy/(2) case as below. It can be
shown [5] that the minimum uncertainty states of the angular momentum algebra (1) satisfy

(J1+irDR)|Y) = uly). ®)

To solve this equation, we need fortunately the first relation in (1) alone i lettanhg.
Then (5) becomes

I +ePI)y) =1 y) (6)

whereu’ = u(e® + e #). Due to the first relation in (1), we havées e P = etf ..
(Note that we have the ordinary exponential here.) Therefore we get

B +Ie PRy = W)
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and in the usual way [5], the solution has the following form:
l¥) = Ne“=|9) ™

where|¢) is an eigenstate af; and N is the normalization constant given fgr# 1 case
as

-1/2
{ Z eZIBm(Cm A(m) }

m=—j

WhereC’ A0%) will be determined shortly.

The crucial point is that in the case of ordinaf¥ (2), |¢) is simply €'2%2| j, m) while
now such a simple result is not possible. We now proceed to constsu@xplicitly for
SU,(2). |¢) is an eigenstate af; with eigenvaluer(m) (say). m is just a running label
ranging from—j to j and (/) is ag-number.|¢) is expanded in terms of the eigenstates
| j, m) of J3 with coefﬂmentscf . These coefficients whegpn = 1 are the usual Wigner
d-functions withé equal t07r/2 So

‘] .
6) = 1j. A0 =Y Co,ali-m) (®)

m=—j

where the subscript 1 denotes elgenstate}lofr he coefficients”; i and the eigenvalues
A(m) are to be determined. Sindg, m) in (7) are eigenstates aof;, it follows from (2),
that

J .
Nlj @) =3 Y ACH 1 [ +m + 1L = mD)Y?

m=—j
+Cgy sy = m 4+ 100 + mDY?Y i, m). 9)

In order that|j, »(m))1 be an eigenstate aof; with eigenvaluesi.(m), it follows from (8)
and (9) that,

C(m+l) sy (U +m + 100 —mD V2 + C(m v (L = m + 20 +mh Y2
= 260)C),, (10)

This is our ‘master equation’, determinimdl’m) andi(m). By settingm = j, j—1,j—2
and so on, we find
2xn(m)

C(jj DA = \/IZ] CJ{/\(rh)
c A —[2)]1

VTR T (21212 — 1) T
ol 2.0 (@20m) — [2/] — [2][2) — 1))

Urorem T J@IBI2 jli2) — 1i2j —2) M
o _ 16140m) — 402(m)([2)] +[2][2) — 1] + [3][2/ — 2)) +[3][2/][2/] — 2]
U= V(218114112 j1i2) — 1112/ — 2][2) — 3]

J
XG5 xoin

(11)

and so on. In the abov@’ - can be considered as an overall multiplicative factor which
can be included in the normallzauon lof) and then the above equations give the expansion
coefficients. For a giverni, we equateC( i—1).20m 10 Zero to determina(m). It is obvious
that the eigenvalues(i) come in pairs with opposite sign.
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We now give a closed expression Ef aqny- Denoting 2(m) by a and [p][2j—(p—1)]
by b, and the ‘continued fraction’,

a_blﬁﬁﬁ...ﬁ (12)

a— a— a— da— a

by F,, equation (11) can be rewritten as

f[P+1][2J - ] , (p+1),A @) _F Cj —p,A(m) (13)

for p = 0to 2j — 1. The above result allows us to express any tunctions differing
by unity in the first index in the subscript for a giverii). From this it is possible to

expressC;, gy IN terms ofCJ wi form=—jtojas
j—m 172 j—m—1
(TTenes = -0} el = | 1 7}l (14)
=1 =0

for m #£ j. Therefore, the eigenstate éf in equation (8) becomes
] m 1
Fy .
A()11) Z 1/2 |.]1 m) (15)
“ A A1) — €~ D)

in the above equation is given by

The multiplicative factorC’Mm)

) j é 81 1F52 -1/2
€l = ( > ) .
J,A@m) —m
’ = T a2 — € — D)

This completes the construction of minimum uncertainty states for quantum §Gu2).

2.1. lllustrations

We illustrate the above procedure for the construction of minimum uncertainty states for
SU,(2) with j = 1,2. It consists of two steps; first finding the eigenvalugs:) of J;
operator withm eigenvalues of/; i.e. —j to +j. For j = 1, these are determined by
equatinngz,Wl) to zero. They are given by

AM0)=0 A= @ A1) = —/@. (16)

Having determined the eigenvaluggn), we evaluate the”-functions using the ‘master
equation’ (10) for general(m) as

Coamy = 2 CLrm
Vi
Cly = (‘M[(Z"]” - 1) Cluy- (17)
qu above equations give tl@-functions for specific values of(/) in (16) in terms of
“ A,(Ar\n similar procedure applied tg = 2, yields the followingx (i):

1/2
A(0)=0 A(ED) = [4]

AE2) = £3{[4] + 2[2][3]}%. (18)
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It can be verified that whep = 1, we obtain the standard eigenvalues. Théunctions
can be determined by once again using (10) and these are in general given by

2x(m)
CJZ.,A(;ﬁ) = ﬁczz,wh)
@1,
V(P T D
2 2um){4ron)® — [4] - [218]) .,
“tam = [213] /4] e

(19)

2 _ (H)?@rim)® —[4] - [213)  4hei)® —[4]
C—Z)»(rﬁ) - 2 3 4 - 4 CZ,)L(ﬁl)'
[2]3][4] [4]

The above expressions give the requi@dunctions in terms ofC5, ., for various (i)
in (18).

We now give the minimum uncertainty angular momentsitn, (2) states forj = 1 and
2. As can be seen from (7) this depends upon the choice of specific valugrigy the
eigenvalue of the operatdi. As an example first we considgr= 1 with A (1) = /[2]/+/2.
Then (7) gives the minimum uncertainty angular momentum state as

|,3):%{eﬁ|l,l>+«f2|l, 0) +e |1, —1)} (20)

whereN = %(eﬂ + e #). For this state, the variances are found to be

(AJ1)? = [2] (& —eF)?

i
(AJp)? = 167 (& +eF)? (21)
and
2
(RIDP = o (& — ey 22)

satisfying (AJ1)? - (AJ2)? = 5 |([2Ja])1° and AJy # AJp.

A mimimum uncertainty state foj = 2 can similarly be constructed by using the
eigenvalues in (18). Choosing the zero eigenvalueif@i) as an example, a minimum
uncertainty state foy = 2 is given by

(4]

— = 12,0)+ |2, 2)). 23
ﬂ[2][3][4])| ) + €712, 2)} (23)

|B) = N'{e %2, -2)
The variances are evaluated as

N'?
412+ &Y + e — 2672 — 2¢%)

(AJ1)? = 4
N2
(AJp)? = e+ &% e 1 2672 4 26
([2J3]) = N2[41(e* — &) (24)

It can be seen thatAJ1)? - (AJ)? = £ (([2J3]))2, and AJy # A .
To summarize this section, we have explicitly constructed minimum uncertainty states
for the quantum grougU,(2). These involve the eigenvalues &f which areq-numbers

and the coeﬁicientsﬁi,k(m). These coefficients are the quantum group analogues of the

Wignerd,{;ﬁ functions for6 = /2. Examples are given fof = 1 and 2 for chosen(m).
This can be easily carried over to other values and othexlues as well. It can be seen that
the minimum uncertainty states coincide with those for ording%(2) only wheng = 1.
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3. Quantum Wigner C-functions

The Wignerd- functlonsd,{qm () play an important role in the theory of representations of
the groupSU (2). In the literature [6] these functions are usually given in terms lof
hypergeometric functions or equivalently as a finite series. The Wigfanctions play a
dual role. To see this, let us consider rotation aboutythexis. The rotation operator is

given by

R,(0) =€ % (25)
and then

d},(0) = (jmle” | jm). (26)
The operatorR, (9) rotates/s to J; = J3cosd + J1 sing and the matrix elements of; are

(S mm = Z d},(0)(J3),rd1 (6). (27)
p.r.m=—j
Here Wignerd-functions relate the matrix elements &f and J;. Relatedly, the basis in
which J3 is diagonal can be written as

jm') sy = Z o @)1jm) g, (28)
m==j

These two roles of the Wignef-functions have been used by Fano and Racah [7] to
facilitate the determinationof d/ ,(6). It is worth recalling that the eigenvalues of the
operators/y, J, and J; form the set{—j, —j + 1,..., 4} and this is due to the fact that
these operators are unitarily equivalent. In the construction of minimum uncertainty states
in section 2, we required the eigenvalues/gfand these are readily provided by the above
equation ford = x/2 for ordinarySU (2). The case of the quantum gro§@/,(2) as far as
the rotation operators are concerned is quite different as the opevat(os J,) and J; are
not equivalent and they do not appear symmetrically in ghedeformed algebra (1). The
construction of minimum uncertainty states &iv, (2) required the quantum group analogue
of the Wignerd-functions, denoted by?’ 2y T/2) and these are constructed in section 2.
In this section, we define the notion of rotation 3i/,(2) and give a representation for
guantum Wigner functions in terms of continued fract|0ns

While the meaning of a rotation by an anglearound, say, the axis for ordinary
SU (2) is well known, it is not so foiSU, (2) as theg-exponential fails to satisfy the desired
properties. To motivate a definition of rotation {8/, (2), we note that for ordinar§U (2)
the above-mentioned rotation takésto J;:

J§ = cos J; + sind J;. (29)

Alternately, the same transformation applied to a basis in the ord8%) in which J3 is
diagonal results in a basis in whicl (29) is diagonal.We take the later as our definition
for a rotation byé around they axis in SU,(2). To be consistent witly-functions, the
ordinary trignometric functions sthand co® will be replaced by the corresponding pseudo-
periodicg-circular functionsS, (8) andC, (0) respectively. Thesg-circular functions have
been introduced by Jackson [8] with quasi-period= (Fq(l/Z))z, in terms ofg-Gamma
function. In the limitg = 1, » — 7 and S,(9) and C,(9) go over to si@) and cosl),
respectively. Further properties of thegecircular functions are given in [9]. Thus, a
rotation by around they axis takes/s to J; and is given by

Ty =C,(0)J3+ S,0) 1. (30)
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Denoting the (2+1) eigenvalues of; by A(m, 6) (wherem = —j to j; andi(m, 6) are
in generalg-functions ofS,(#) and C,(0)) and writing an eigenstate of, as|j, A (i, 0)),
we have,

J3lj, A0, 0)) = w(m, )1, (i1, 0)). (31)
Now expanding j, A(#, 6)) in terms of the eigenstates df, we have
] A
7. 200, 0)) = > Coh oyl m) (32)
m=—j

where the expansion coeffluem‘% gy are the quantum grougU,(2) analogue of the
Wigner d-functions for allg values. Usmg the actions df, J.. on|j, m) as in (2), we find

the following recursion relation fo€;, , .

(L +mllj = m +1DY2S,0)C), .0y O+ = mllj +m 4 1DY2S,O)C, 1 5 5., O)
= 2(\ @71, 0) — mC, (9))C;,A(m,9)(9) (33)
Defininga,, andb, as
am = 20031, 0) — mC,(6))
by =[plI2j — (p — D]S;(©O) (34)

we can in general relate twG-functions differing by one in the first subscript, namely, the
eigenvalue of/s, in terms of acontinued fractioras

{lp + 1127 — pI2S,O)CL 1) 5000 @)
b b 1 b -2 bl j
- {af—P - "'.}C/‘J—p,x(rh,m(@)' (35)
Aj—(p-1~ 4j—(p-2— 4j—(p-3) a;
As in section 2, the above relation (35) plays two roles. Firstly, for a giyeaquating
Cii—l,k(nﬁ.ﬁ)(e) to zero, the eigenvalues(in, ) are determined. Secondly, using these

eigenvalues, the quantum Wigner functions can all be determined in ternﬁ 5,0 6, (0)
which itself can be determined by normalization of (32) as in section 2.

Although this procedure has been used in illustrations in section 2 fern/2, we
give sample results fof = 1 and 2 for all values ob. For j = 1, the quantum Wigner
functions are

2 .
om0 ) = miq(@)wm 0) — Cy(O}CT, 7.0 (0)
ij_,)b(yﬁ,(.)) (9) = [Z]SW{[U\(’;L 9)()»(1/)7!, 0 — Cq(g)) - [Z]Sg('g)}cj{)b(y;,,g)(g) (36)
q
where the various values afim, 0) are
1/2
A, 0) =0 AR, 0) = { [2 152(9) + 02(9)} . (37)

For j = 2, we find
2(1(m, 0) — 2C,4(6)) ©)
VIS, @)

4(h(m, 0) — C,(0))(A(m, ) — 2C, (0
V2] 2@ A O~ CaOC6) = 26,6))

—[41S20))C3 . .0)(©)

Cix(nﬁ,e)(m =

Cg,x(rh,e)(e) =
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2.3, ) (A((1, ) — C4(0)) (A (71, 0) — 2C4(6)) — [4]S2(0))
[21[31VI4153(6)
}CZ .00 (0)

CEL)L(,;,’Q) (9) = {

_Z(A(Vh, 0) — 2Cq(0))
VI41S,(6)
c?,. @—{thmW%@+Q@WM%®—QwMM%m—KM@
e [21[3][4] $3(6)
_AAAGn, 0)(1m, 0 + C, (0))S2(6)
[21[3][4] S3(6)
AR, 8) + Cy(0) (-0, 6) — 2C,4(6))
[4]152(0)

{4(h(m, 0) — Cq(0))(A(m, 0) — 2C4(0)) — [4155(9)}}

~ [4]529)
X C%,A(rhﬁ) @) (38)

where the values fok(m, 8) can be obtained by equatir(gﬁaww)(e) to zero.

Wheng = 1, we have ] = n and soa,, = 2(m — mcog0)) andb, = p(2j —
p +1)sirf 6 as the quasic-periodic circular functions go over to the trignometric functions.
Then (35) gives

((p+D@j— pY?sirtod]_, 1 ()
b b,_ b,_ b i
_ {aj_,, _ P p—1 p—2 "’1}d,~/_p,,ﬁ(9) (39)
Aj—(p-1— Aj—(p-2)— 4j—(p—3— aj

a formula for theSU (2) Wignerd-function ratios as a continued fraction. In order to verify
this result, we proceed as follows. In the case of ordingii(2), the Wignerd-functions
can be expressed in terms of th& -hypergeometric function [6]. The ratio,

2Fi(a,b+1¢c+1;2)

2Fi1(a, b; ¢; z)

of two , F;-hypergeometric functions with unit increase in the second and third arguments
is the well known continued fraction (Gauss formula [10])

ia(c —b)z/c(c+ D) b+ D(c—a+Dz/cc+ D(c+2)

i T T e

The ratiodj’;M(Q)/djjfl ;(0) has been evaluated using (39) and found to reproduce the

expression obtained using [6] and (40). The formula for the Wightmctions forg = 1

in terms of continued fractions is consistent with the property of thehypergeometric
function. So the formula for the Wignei-function for ¢ # 1 suggests a generalization of
the Gauss formula for gp; g-hypergeometric function. It is not clear at present that these
continued fraction results have physical applicability.

(40)

4. Summary

We have explicitly constructed squeezed angular momentum stat§€/§¢®) in terms of
guantum WigneC-functions, defined in this paper. TheSdunctions are analogous hd,m,

Wigner functions. The squeezed states satisfy the minimum angular momentum uncertainty
product withAJ; # AJ,. The above construction uses the notion of rotation aboutthe
axis by /2. This has been generalized to all valuegddy using quasi-periodic circular
functions and an expression for quantum Wigidefunctions as a continued fraction is
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obtained. Foy = 1, this gives a relation betweetj,, andd?,_, .. which has been verified.
It is suggested that th€-functions are expressible in terms of,a;-g-hypergeometric
function, thereby giving an algebraic setting fogenypergeometric function in the study

of rotation in quantum grougU, (2).
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