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Abstract. Minimum uncertainty angular momentum states for the quantum groupSUq(2) are
constructed. They involve the eigenvalues ofJ1 which areq-numbers and the quantum group
analogue of the Wignerd-functions forθ = π/2. The result is generalized for all values ofθ
and a formula for the quantum Wignerd-function is derived. The case ofq = 1 is discussed
and compared with the well known results for the Wignerd-functions.

1. Introduction

Quantum groups originate in the study of quantum inverse scattering methods and since then
there have been many extensive studies on their representation theory and structure. In this
paper we discuss the finite dimensional representation of the quantum groupSUq(2) with the
intention of constructing minimum uncertainty states. In the process we are led to the notion
of rotation in quantum groups and the matrix elements of angular momentum operators.
These define the quantum group analogue of Wignerd-functions (rotation matrices) which
reduce to the well knowndjmm′(θ) functions whenq = 1. A result for the ratio of two
such quantum Wignerd-functions as a continued fraction is obtained. This is verified to be
true for q = 1. For q 6= 1, it is suggestive from our discussion that the quantum Wigner
d-function can be expressed in terms of a2φ1 q-hypergeometric function.

It is well known that the representation theory of classical Lie algebras gives an algebraic
setting for many special functions in mathematical physics. Quantum (deformed) Lie
groups and algebras play a role for generalization to baseq (the deformation parameter)
of these functions, namely,q-special functions. Here we motivate one suchq-function, a
q-hypergeometric function2φ1 (Heine’s series) by considering rotation inSUq(2).

The coherent states of the quantum Heisenberg group formed byq-boson creation,
annihilation and the number operators satisfy the minimum uncertainty property [1]. On
the other hand it is known that in the case of ordinarySU (2), the angular momentum
coherent states do not necessarily satisfy the minimum uncertainty property [2]. The angular
momentum coherent states and those that give minimum uncertainty product are respectively
called Bloch and ‘intelligent’ states in the literature. Explicit construction procedures for
them in the case of ordinary angular momentum algebra are known [2]. For the quantum
groupSUq(2), coherent states have been constructed by Jurco [3] and recently by Aref’eva
et al [4] using the theory of harmonic analysis. In this paper, we construct states having the
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minimum uncertainty forSUq(2) by introducing the notion of rotation in quantum groups
and give the matrix elements of the rotation operators.

2. Construction of minimum uncertainty states

The q-deformed algebra ofSUq(2) is an associative algebra of the generatorsJ3, J±(=
J1 ± iJ2) satisfying

[J3, J±] = ±J±
[J+, J−] = [2J3] (1)

where

[n] = qn − q−n

q − q−1
.

The irreducible representation ofSUq(2) in a (2j+1)-dimensional Hilbert space is spanned
by vectors|j,−j〉, |j,−j + 1〉, |j,−j + 2〉, . . . , |j, j〉 and the action of the generators (1)
is

J3|j,m〉 = m|j,m〉
J+|j,m〉 = ([j −m][j +m+ 1])1/2|j,m+ 1〉
J−|j,m〉 = ([j +m][j −m+ 1])1/2|j,m− 1〉. (2)

Jurco [3] defined the coherent state forSUq(2) as

|α〉 = eαJ+
q |j,−j〉 (3)

where eq is q-exponential function,

exq =
∞∑
n=0

xn

[n]!
.

The state in (3) is (i) continuous inα and (ii) satisfies the completeness property (resolution
of unity). The uncertainty relation following from (1) is

4J1 · 4J2 > 1
4|〈[2J3]〉| (4)

and it can be verified that the coherent state (3) does not have the minimum uncertainty
property. An important observation regarding (3) is worth pointing out. In the ordinary
SU (2) case, we have eαJ+|j,−j〉 which amounts to a mere redefinition of the axes of the
system and so it is a trivial choice. However, in the quantumSUq(2) case, as in (3), we
have aq-exponential function which is not a rotation operator in the standard sense and
so (3) is a non-trivial choice. In fact a proper representation of a rotation operator for this
quantum group will be considered in due course.

We exploit the first relation in (1) in constructing minimum uncertainty state forSUq(2).
We modify the well known procedure [5] in the ordinarySU (2) case as below. It can be
shown [5] that the minimum uncertainty states of the angular momentum algebra (1) satisfy

(J1 + iλJ2)|ψ〉 = µ|ψ〉. (5)

To solve this equation, we need fortunately the first relation in (1) alone. Letλ = tanhβ.
Then (5) becomes

(eβJ+ + e−βJ−)|ψ〉 = µ′|ψ〉 (6)

whereµ′ = µ(eβ + e−β). Due to the first relation in (1), we have eβJ3J±e−βJ3 = e±βJ±.
(Note that we have the ordinary exponential here.) Therefore we get

eβJ3(J+ + J−)e−βJ3|ψ〉 = µ′|ψ〉
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and in the usual way [5], the solution has the following form:

|ψ〉 = NeβJ3|φ〉 (7)

where|φ〉 is an eigenstate ofJ1 andN is the normalization constant given forq 6= 1 case
as

N =
{ j∑
m=−j

e2βm(C
j

m,λ(m̃)
)2

}−1/2

whereCj
m,λ(m̃)

will be determined shortly.

The crucial point is that in the case of ordinarySU(2), |φ〉 is simply e−i π2 J2|j,m〉 while
now such a simple result is not possible. We now proceed to construct|φ〉 explicitly for
SUq(2). |φ〉 is an eigenstate ofJ1 with eigenvalueλ(m̃) (say). m̃ is just a running label
ranging from−j to j andλ(m̃) is aq-number.|φ〉 is expanded in terms of the eigenstates
|j,m〉 of J3 with coefficientsCj

m,λ(m̃)
. These coefficients whenq = 1 are the usual Wigner

d-functions withθ equal toπ/2. So,

|φ〉 = |j, λ(m̃)〉1 =
j∑

m=−j
C
j

m,λ(m̃)
|j,m〉 (8)

where the subscript 1 denotes eigenstate ofJ1. The coefficientsCj
m,λ(m̃)

and the eigenvalues
λ(m̃) are to be determined. Since|j,m〉 in (7) are eigenstates ofJ3, it follows from (2),
that

J1|j, λ(m̃)〉1 = 1
2

j∑
m=−j

{Cj
(m+1),λ(m̃)([j +m+ 1][j −m])1/2

+Cj
(m−1),λ(m̃)([j −m+ 1][j +m])1/2}|j,m〉. (9)

In order that|j, λ(m̃)〉1 be an eigenstate ofJ1 with eigenvaluesλ(m̃), it follows from (8)
and (9) that,

C
j

(m+1),λ(m̃)([j +m+ 1][j −m])1/2 + C
j

(m−1),λ(m̃)([j −m+ 1][j +m])1/2

= 2λ(m̃)Cj
m,λ(m̃)

. (10)

This is our ‘master equation’, determiningCj
m,λ(m̃)

andλ(m̃). By settingm = j, j−1, j−2
and so on, we find

C
j

(j−1),λ(m̃) = 2λ(m̃)√
[2j ]

C
j

j,λ(m̃)

C
j

(j−2),λ(m̃) = 4λ2(m̃)− [2j ]√
([2][2j ][2j − 1])

C
j

j,λ(m̃)

C
j

(j−3),λ(m̃) = 2λ(m̃)(4λ2(m̃)− [2j ] − [2][2j − 1])√
([2][3][2j ][2j − 1][2j − 2])

C
j

j,λ(m̃)

C
j

(j−4),λ(m̃) = 16λ4(m̃)− 4λ2(m̃)([2j ] + [2][2j − 1] + [3][2j − 2])+ [3][2j ][2j − 2]√
([2][3][4][2 j ][2j − 1][2j − 2][2j − 3])

×Cj
j,λ(m̃)

(11)

and so on. In the aboveCj
j,λ(m̃)

can be considered as an overall multiplicative factor which
can be included in the normalization of|φ〉 and then the above equations give the expansion
coefficients. For a givenj , we equateCj

(−j−1),λ(m̃) to zero to determineλ(m̃). It is obvious
that the eigenvaluesλ(m̃) come in pairs with opposite sign.
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We now give a closed expression forCj
m,λ(m̃)

. Denoting 2λ(m̃) by a and [p][2j−(p−1)]
by bp and the ‘continued fraction’,

a − bp

a−
bp−1

a−
bp−2

a−
bp−3

a− · · · b1

a
(12)

by Fp, equation (11) can be rewritten as√
([p + 1][2j − p])Cj

j−(p+1),λ(m̃) = FpC
j

j−p,λ(m̃) (13)

for p = 0 to 2j − 1. The above result allows us to express any twoC-functions differing
by unity in the first index in the subscript for a givenλ(m̃). From this it is possible to
expressCj

m,λ(m̃)
in terms ofCj

j,λ(m̃)
for m = −j to j as{ j−m∏

`=1

[`][2j − (`− 1)]

}1/2

C
j

m,λ(m̃)
=

{ j−m−1∏
`=0

F`

}
C
j

j,λ(m̃)
(14)

for m 6= j . Therefore, the eigenstate ofJ1 in equation (8) becomes

|φ〉 = C
j

j,λ(m̃)

j∑
m=−j

∏j−m−1
`=0 F`

{∏j−m
`=1 [`][2j − (`− 1)]}1/2 |j,m〉. (15)

The multiplicative factorCj
j,λ(m̃)

in the above equation is given by

C
j

j,λ(m̃)
=

( j∑
m=−j

∏j−m−1
`=0 F 2

`∏j−m
`=1 [`][2j − (`− 1)]

)−1/2

.

This completes the construction of minimum uncertainty states for quantum groupSUq(2).

2.1. Illustrations

We illustrate the above procedure for the construction of minimum uncertainty states for
SUq(2) with j = 1, 2. It consists of two steps; first finding the eigenvaluesλ(m̃) of J1

operator withm̃ eigenvalues ofJ3 i.e. −j to +j . For j = 1, these are determined by
equatingC1

−2,λ(m̃) to zero. They are given by

λ(0) = 0 λ(1) =
√(

[2]

2

)
λ(−1) = −

√(
[2]

2

)
. (16)

Having determined the eigenvaluesλ(m̃), we evaluate theC-functions using the ‘master
equation’ (10) for generalλ(m̃) as

C1
0,λ(m̃) = 2λ(m̃)√

[2]
C1

1,λ(m̃)

C1
−1,λ(m̃) =

(
4λ(m̃)2

[2]
− 1

)
C1

1,λ(m̃). (17)

The above equations give theC-functions for specific values ofλ(m̃) in (16) in terms of
C1

1,λ(m̃).
A similar procedure applied toj = 2, yields the followingλ(m̃):

λ(0) = 0 λ(±1) = ± [4]1/2

2
λ(±2) = ± 1

2{[4] + 2[2][3]}1/2. (18)
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It can be verified that whenq = 1, we obtain the standard eigenvalues. TheC-functions
can be determined by once again using (10) and these are in general given by

C2
1,λ(m̃) = 2λ(m̃)√

[4]
C2

2,λ(m̃)

C2
0,λ(m̃) = (4λ(m̃)2 − [4]√

([2][3][4] )
C2

2,λ(m̃)

C2
−1,λ(m̃) = 2λ(m̃){4λ(m̃)2 − [4] − [2][3]}

[2][3]
√

[4]
C2

2,λ(m̃)

C2
−2,λ(m̃) =

(
4λ(m̃)2(4λ(m̃)2 − [4] − [2][3])

[2][3][4]
− 4λ(m̃)2 − [4]

[4]

)
C2

2,λ(m̃). (19)

The above expressions give the requiredC-functions in terms ofC2
2,λ(m̃) for variousλ(m̃)

in (18).
We now give the minimum uncertainty angular momentumSUq(2) states forj = 1 and

2. As can be seen from (7) this depends upon the choice of specific value forλ(m̃), the
eigenvalue of the operatorJ1. As an example first we considerj = 1 with λ(m̃) = √

[2]/
√

2.
Then (7) gives the minimum uncertainty angular momentum state as

|β〉 = 1

2N
{eβ |1, 1> +

√
2|1, 0〉 + e−β |1,−1〉} (20)

whereN = 1
2(e

β + e−β). For this state, the variances are found to be

(4J1)
2 = [2]

16N2
(eβ − e−β)2

(4J2)
2 = [2]

16N2
(eβ + e−β)2 (21)

and

|〈[2J3]〉|2 = [2]2

16N4
(e2β − e−2β)2 (22)

satisfying(4J1)
2 · (4J2)

2 = 1
16|〈[2J3]〉|2 and4J1 6= 4J2.

A mimimum uncertainty state forj = 2 can similarly be constructed by using the
eigenvalues in (18). Choosing the zero eigenvalue forλ(m̃) as an example, a minimum
uncertainty state forj = 2 is given by

|β〉 = N ′{e−2β |2,−2〉 − [4]√
([2][3][4] )

|2, 0〉 + e2β |2, 2〉}. (23)

The variances are evaluated as

(4J1)
2 = N ′2

4
[4](2 + e4β + e−4β − 2e−2β − 2e2β)

(4J2)
2 = N ′2

4
[4](2 + e4β + e−4β + 2e−2β + 2e2β)

〈[2J3]〉 = N ′2[4](e4β − e−4β). (24)

It can be seen that(4J1)
2 · (4J2)

2 = 1
16(〈[2J3]〉)2, and4J1 6= 4J2.

To summarize this section, we have explicitly constructed minimum uncertainty states
for the quantum groupSUq(2). These involve the eigenvalues ofJ1 which areq-numbers
and the coefficientsCj

m,λ(m̃)
. These coefficients are the quantum group analogues of the

Wignerdj
m,m̃

functions forθ = π/2. Examples are given forj = 1 and 2 for chosenλ(m̃).
This can be easily carried over to other values and otherj values as well. It can be seen that
the minimum uncertainty states coincide with those for ordinarySU(2) only whenq = 1.



432 A Mann and R Parthasarathy

3. Quantum Wigner C-functions

The Wignerd-functionsdjmm′(θ) play an important role in the theory of representations of
the groupSU(2). In the literature [6] these functions are usually given in terms of2F1-
hypergeometric functions or equivalently as a finite series. The Wignerd-functions play a
dual role. To see this, let us consider rotation about they axis. The rotation operator is
given by

Ry(θ) = e−iθJ2 (25)

and then

d
j

mm′(θ) = 〈jm|e−iθJ2|jm′〉. (26)

The operatorRy(θ) rotatesJ3 to J ′
3 ≡ J3 cosθ + J1 sinθ and the matrix elements ofJ ′

3 are

(J ′
3)mm′ =

j∑
p,r,m=−j

djmp(θ)(J3)prd
†j
rm(θ). (27)

Here Wignerd-functions relate the matrix elements ofJ3 and J ′
3. Relatedly, the basis in

which J ′
3 is diagonal can be written as

|jm′〉J ′
3
=

j∑
m=−j

d
j

mm′(θ)|jm〉J3. (28)

These two roles of the Wignerd-functions have been used by Fano and Racah [7] to
facilitate thedeterminationof djmm′(θ). It is worth recalling that the eigenvalues of the
operatorsJ1, J2 andJ3 form the set{−j,−j + 1, . . . ,+j} and this is due to the fact that
these operators are unitarily equivalent. In the construction of minimum uncertainty states
in section 2, we required the eigenvalues ofJ1 and these are readily provided by the above
equation forθ = π/2 for ordinarySU(2). The case of the quantum groupSUq(2) as far as
the rotation operators are concerned is quite different as the operatorsJ1 (or J2) andJ3 are
not equivalent and they do not appear symmetrically in theq-deformed algebra (1). The
construction of minimum uncertainty states forSUq(2) required the quantum group analogue
of the Wignerd-functions, denoted byCj

m,λ(m̃)
(π/2) and these are constructed in section 2.

In this section, we define the notion of rotation inSUq(2) and give a representation for
quantum Wigner functions in terms of continued fractions.

While the meaning of a rotation by an angleθ around, say, they axis for ordinary
SU(2) is well known, it is not so forSUq(2) as theq-exponential fails to satisfy the desired
properties. To motivate a definition of rotation forSUq(2), we note that for ordinarySU(2)
the above-mentioned rotation takesJ3 to J ′

3:

J ′
3 = cosθJ3 + sinθJ1. (29)

Alternately, the same transformation applied to a basis in the ordinarySU(2) in which J3 is
diagonal results in a basis in whichJ ′

3 (29) is diagonal.We take the later as our definition
for a rotation byθ around they axis in SUq(2). To be consistent withq-functions, the
ordinary trignometric functions sinθ and cosθ will be replaced by the corresponding pseudo-
periodicq-circular functionsSq(θ) andCq(θ) respectively. Theseq-circular functions have
been introduced by Jackson [8] with quasi-periodω = (0q(1/2))2, in terms ofq-Gamma
function. In the limitq = 1, ω → π andSq(θ) andCq(θ) go over to sin(θ) and cos(θ),
respectively. Further properties of theseq-circular functions are given in [9]. Thus, a
rotation byθ around they axis takesJ3 to J ′

3 and is given by

J ′
3 = Cq(θ)J3 + Sq(θ)J1. (30)
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Denoting the (2j+1) eigenvalues ofJ ′
3 by λ(m̃, θ) (wherem̃ = −j to j ; andλ(m̃, θ) are

in generalq-functions ofSq(θ) andCq(θ)) and writing an eigenstate ofJ ′
3 as |j, λ(m̃, θ)〉,

we have,

J ′
3|j, λ(m̃, θ)〉 = λ(m̃, θ)|j, λ(m̃, θ)〉. (31)

Now expanding|j, λ(m̃, θ)〉 in terms of the eigenstates ofJ3, we have

|j, λ(m̃, θ)〉 =
j∑

m=−j
C
j

m,λ(m̃,θ)
|j,m〉 (32)

where the expansion coefficientsCj
m,λ(m̃,θ)

are the quantum groupSUq(2) analogue of the
Wignerd-functions for allθ values. Using the actions ofJ3, J± on |j,m〉 as in (2), we find
the following recursion relation forCj

m,λ(m̃,θ)
:

([j +m][j −m+ 1])1/2Sq(θ)C
j

m−1,λ(m̃,θ)(θ)+([j −m][j +m+ 1])1/2Sq(θ)C
j

m+1,λ(m̃,θ)(θ)

= 2(λ(m̃, θ)−mCq(θ))C
j

m,λ(m̃,θ)
(θ). (33)

Defining am andbp as

am = 2(λ(m̃, θ)−mCq(θ))

bp = [p][2j − (p − 1)]S2
q (θ) (34)

we can in general relate twoC-functions differing by one in the first subscript, namely, the
eigenvalue ofJ3, in terms of acontinued fractionas

{[p + 1][2j − p]}1/2Sq(θ)C
j

j−(p+1),λ(m̃,θ)(θ)

=
{
aj−p − bp

aj−(p−1)−
bp−1

aj−(p−2)−
bp−2

aj−(p−3)− · · · b1

aj

}
C
j

j−p,λ(m̃,θ)(θ). (35)

As in section 2, the above relation (35) plays two roles. Firstly, for a givenj , equating
C
j

−j−1,λ(m̃,θ)(θ) to zero, the eigenvaluesλ(m̃, θ) are determined. Secondly, using these

eigenvalues, the quantum Wigner functions can all be determined in terms ofC
j

j,λ(m̃,θ)
(θ)

which itself can be determined by normalization of (32) as in section 2.
Although this procedure has been used in illustrations in section 2 forθ = π/2, we

give sample results forj = 1 and 2 for all values ofθ . For j = 1, the quantum Wigner
functions are

C1
0,λ(m̃,θ)(θ) = 2√

[2]Sq(θ)
{λ(m̃, θ)− Cq(θ)}C1

1,λ(m̃,θ)(θ)

C1
−1,λ(m̃,θ)(θ) = 1

[2]S2
q (θ)

{4λ(m̃, θ)(λ(m̃, θ − Cq(θ))− [2]S2
q (θ)}C1

1,λ(m̃,θ)(θ) (36)

where the various values ofλ(m̃, θ) are

λ(m̃, θ) = 0 λ(m̃, θ) = ±
{

[2]

2
S2
q (θ)+ C2

q (θ)

}1/2

. (37)

For j = 2, we find

C2
1,λ(m̃,θ)(θ) = 2(λ(m̃, θ)− 2Cq(θ))√

[4]Sq(θ)
C2

2,λ(m̃,θ)(θ)

C2
0,λ(m̃,θ)(θ) = 1√

([2][3][4] )S2
q (θ)

{4(λ(m̃, θ)− Cq(θ))(λ(m̃, θ)− 2Cq(θ))

−[4]S2
q (θ)}C2

2,λ(m̃,θ)(θ)
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C2
−1,λ(m̃,θ)(θ) = {2λ(m̃, θ)(4(λ(m̃, θ)− Cq(θ))(λ(m̃, θ)− 2Cq(θ))− [4]S2

q (θ))

[2][3]
√

[4]S3
q (θ)

−2(λ(m̃, θ)− 2Cq(θ))√
[4]Sq(θ)

}C2
2,λ(m̃,θ)(θ)

C2
−2,λ(m̃,θ)(θ) =

{
16λ(m̃, θ)(λ(m̃, θ)+ Cq(θ))(λ(m̃, θ)− Cq(θ))(λ(m̃, θ)− 2Cq(θ))

[2][3][4] S3
q (θ)

−4[4]λ(m̃, θ)(λ(m̃, θ + Cq(θ))S
2
q (θ)

[2][3][4] S3
q (θ)

−4(λ(m̃, θ)+ Cq(θ))(λ(m̃, θ)− 2Cq(θ))

[4]S2
q (θ)

− 1

[4]S2
q (θ)

{4(λ(m̃, θ)− Cq(θ))(λ(m̃, θ)− 2Cq(θ))− [4]S2
q (θ)}

}
×C2

2,λ(m̃,θ)(θ) (38)

where the values forλ(m̃, θ) can be obtained by equatingC2
−3,λ(m̃,θ)(θ) to zero.

When q = 1, we have [n] = n and soam = 2(m̃ − m cos(θ)) and bp = p(2j −
p+ 1) sin2 θ as the quasic-periodic circular functions go over to the trignometric functions.
Then (35) gives

{(p + 1)(2j − p)}1/2 sin2 θd
j

j−(p+1),m̃(θ)

=
{
aj−p − bp

aj−(p−1)−
bp−1

aj−(p−2)−
bp−2

aj−(p−3)− · · · b1

aj

}
d
j

j−p,m̃(θ) (39)

a formula for theSU(2) Wignerd-function ratios as a continued fraction. In order to verify
this result, we proceed as follows. In the case of ordinarySU(2), the Wignerd-functions
can be expressed in terms of the2F1-hypergeometric function [6]. The ratio,

2F1(a, b + 1; c + 1; z)
2F1(a, b; c; z)

of two 2F1-hypergeometric functions with unit increase in the second and third arguments
is the well known continued fraction (Gauss formula [10])

1

1−
a(c − b)z/c(c + 1)

1−
(b + 1)(c − a + 1)z/c(c + 1)(c + 2)

1− . . . . (40)

The ratiodj
j−2,m̃(θ)/d

j

j−1,m̃(θ) has been evaluated using (39) and found to reproduce the
expression obtained using [6] and (40). The formula for the Wignerd-functions forq = 1
in terms of continued fractions is consistent with the property of the2F1-hypergeometric
function. So the formula for the Wignerd-function for q 6= 1 suggests a generalization of
the Gauss formula for a2φ1 q-hypergeometric function. It is not clear at present that these
continued fraction results have physical applicability.

4. Summary

We have explicitly constructed squeezed angular momentum states forSUq(2) in terms of
quantum WignerC-functions, defined in this paper. TheseC-functions are analogous todjmm′

Wigner functions. The squeezed states satisfy the minimum angular momentum uncertainty
product with4J1 6= 4J2. The above construction uses the notion of rotation about they

axis byπ/2. This has been generalized to all values ofθ by using quasi-periodic circular
functions and an expression for quantum WignerC-functions as a continued fraction is
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obtained. Forq = 1, this gives a relation betweendjmm′ anddjm−1,m′ which has been verified.
It is suggested that theC-functions are expressible in terms of a2φ1-q-hypergeometric
function, thereby giving an algebraic setting for aq-hypergeometric function in the study
of rotation in quantum groupSUq(2).
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